Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(18): 9501-9508, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651296

RESUMEN

Silicon (Si) alkaline etching constitutes a fundamental process in the semiconductor industry. Although its etching kinetics on plain substrates have been thoroughly investigated, the kinetics of Si wet etching in nanoconfinements have yet to be fully explored despite its practical importance in three-dimensional (3-D) semiconductor manufacturing. Herein, we report the systematic study of potassium hydroxide (KOH) wet etching kinetics of amorphous silicon (a-Si)-filled two-dimensional (2-D) planar nanochannels. Our findings reveal that the etching rate would increase with the increase in nanochannel height before reaching a plateau, indicating a strong nonlinear confinement effect. Through investigation using etching solutions with different ionic strengths and/or different temperatures, we further find that both electrostatic interactions and the hydration layer inside the nanoconfinement contribute to the confinement-dependent etching kinetics. Our results offer fresh perspectives into the kinetic study of reactions in nanoconfinements and will shed light on the optimization of etching processes in the semiconductor industry.

2.
Nat Commun ; 15(1): 2949, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580645

RESUMEN

Manipulating liquid flow over open solid substrate at nanoscale is important for printing, sensing, and energy devices. The predominant methods of liquid maneuvering usually involve complicated surface fabrications, while recent attempts employing external stimuli face difficulties in attaining nanoscale flow control. Here we report a largely unexplored ion beam induced film wetting (IBFW) technology for open surface nanofluidics. Local electrostatic forces, which are generated by the unique charging effect of Helium focused ion beam (HFIB), induce precursor film of ionic liquid and the disjoining pressure propels and stabilizes the nanofilm with desired patterns. The IBFW technique eliminates the complicated surface fabrication procedures to achieve nanoscale flow in a controllable and rewritable manner. By combining with electrochemical deposition, various solid materials with desired patterns can be produced.

3.
Proc Natl Acad Sci U S A ; 119(27): e2200845119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759673

RESUMEN

Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.


Asunto(s)
Activación del Canal Iónico , Nanopartículas , Nanoporos , Liposomas , Fosfatidilcolinas/química
4.
J Chem Phys ; 154(22): 224702, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241226

RESUMEN

Living organisms can sense extracellular forces via mechanosensitive ion channels, which change their channel conformations in response to external pressure and regulate ion transport through the cell membrane. Such pressure-regulated ion transport is critical for various biological processes, such as cellular turgor control and hearing in mammals, but has yet to be achieved in artificial systems using similar mechanisms. In this work, we construct a nanoconfinement by reversibly blocking a single nanopore with a nanoparticle and report anomalous and ultra-mechanosensitive ionic transport across the resulting nanoconfinement upon assorted mechanical and electrical stimuli. Our observation reveals a suppressed ion conduction through the system as the applied pressure increases, which imitates certain behaviors of stretch-inactivated ion channels in biological systems. Moreover, pressure-induced ionic current rectification is also observed despite the high ionic concentration of the solution. Using a combined experimental and simulation study, we correlate both phenomena to pressure-induced nanoparticle rotation and the resulting physical structure change in the blocked nanopore. This work presents a mechanosensitive nano-confinement requiring minimal fabrication techniques and provides new opportunities for bio-inspired nanofluidic applications.


Asunto(s)
Nanopartículas/química , Nanoporos , Transporte Iónico , Mecanotransducción Celular , Presión
5.
Acc Chem Res ; 53(2): 347-357, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31922716

RESUMEN

Nanofluidics is the study of fluids under nanoscale confinement, where small-scale effects dictate fluid physics and continuum assumptions are no longer fully valid. At this scale, because of large surface-area-to-volume ratios, the fluid interaction with boundaries becomes more pronounced, and both short-range steric/hydration forces and long-range van der Waals forces and electrostatic forces dictate fluid behavior. These forces lead to a spectrum of anomalous transport and thermodynamic phenomena such as ultrafast water flow, enhanced ion transport, extreme phase transition temperatures, and slow biomolecule diffusion, which have been the subject of extensive computational studies. Experimental quantification of these phenomena was also enabled by the advent of nanofluidic technology, which has transformed challenging nanoscale fluid measurements into facile optical and electrical recordings. Our groups' focus is to investigate nanoscale (2 to 103 nm) fluid behaviors in the context of fluid mechanics and thermodynamics through the development of novel nanofluidic tools, to examine the applicability of classical equations at the nanoscale, to identify the source of deviations, and to explore new physics emerging at this scale. In this Account, we summarize our recent findings regarding liquid transport, vaporization, and condensation of nanoscale-confined liquids. Our study of nanoscale water transport identified an additional resistance in hydrophilic nanochannels, attributed to the reduced cross-sectional area caused by the formation of an immobile hydration layer on the surfaces. In contrast, a reduction in flow resistance was discovered in graphene-coated hydrophobic nanochannels, due to water slippage on the graphene surface. In the context of vaporization, the kinetic-limited evaporation flux was measured and found to exceed the classical theoretical prediction by an order of magnitude in hydrophilic nanochannels/nanopores as a result of the thin film evaporation outside of the apertures. This factor was eliminated by modifying the hydrophobicity of the aperture's exterior surface, enabling the identification of the true kinetic limits inside nanoconfinements and a crucial confinement-dependent evaporation coefficient. The transport-limited evaporation dynamics was also quantified, where experimental results confirmed the parallel diffusion-convection resistance model in both single nanoconduits and nanoporous systems at high accuracy. Furthermore, we have extended our studies to different aspects of condensation in nanoscale-confined spaces. The initiation of condensation for a single-component hydrocarbon was observed to follow the Kelvin equation, whereas for hydrocarbon mixtures it deviated from classical theory because of surface-selective adsorption, which has been corroborated by simulations. Moreover, the condensation dynamics deviates from the bulk and is governed by either vapor transport or liquid transport depending on the confinement scale. Overall, by using novel nanofluidic devices and measurement strategies, our work explores and further verifies the applicability of classical fluid mechanics and thermodynamic equations such as the Navier-Stokes, Kelvin, and Hertz-Knudsen equations at the nanoscale. The results not only deepen our understanding of the fundamental physical phenomena of nanoscale fluids but also have important implications for various industrial applications such as water desalination, oil extraction/recovery, and thermal management. Looking forward, we see tremendous opportunities for nanofluidic devices in probing and quantifying nanoscale fluid thermophysical properties and more broadly enabling nanoscale chemistry and materials science.

6.
Nat Commun ; 10(1): 5030, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695041

RESUMEN

Devices with locally-addressable and dynamically tunable optical properties underpin emerging technologies such as high-resolution reflective displays and dynamic holography. The optical properties of metals such as Y and Mg can be reversibly switched by hydrogen loading, and hydrogen-switched mirrors and plasmonic devices have been realized, but challenges remain to achieve electrical, localized and reversible control. Here we report a nanoscale solid-state proton switch that allows for electrical control of optical properties through electrochemical hydrogen gating. We demonstrate the generality and versatility of this approach by realizing tunability of a range of device characteristics including transmittance, interference color, and plasmonic resonance. We further discover and exploit a giant modulation of the effective refractive index of the gate dielectric. The simple gate structure permits device thickness down to ~20 nanometers, which can enable device scaling into the deep subwavelength regime, and has potential applications in addressable plasmonic devices and reconfigurable metamaterials.

7.
Nanoscale ; 11(47): 22924-22931, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31763666

RESUMEN

Manipulation and characterization of nanoscale objects through electrokinetic techniques offer numerous advantages compared to the existing optical methods and hold great potential for both fundamental research and practical applications. Here we present a novel electrokinetic tweezer for single nanoparticle manipulation and characterization based on electrokinetic trapping near a low-aspect-ratio nanopore. We find that this nanopore-based electrokinetic tweezer share lots of similarity with optical tweezers and can be modeled as an overdamped harmonic oscillator, with the spring constant of the system being the trap stiffness. We show that different values of ionic currents through the nanopore and trap stiffnesses are achieved when trapping nanoparticles with different sizes (down to 100 nm) and/or zeta potentials. We also demonstrate that the trap stiffness and nanoparticle position can be easily tuned by changing the applied voltage and buffer concentration. We envision that further development of this electrokinetic tweezer will enable various advanced tools for nanophotonics, drug delivery, and biosensing.

8.
ACS Nano ; 13(3): 3363-3372, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30836750

RESUMEN

Evaporation from nanopores plays an important role in various natural and industrial processes that require efficient heat and mass transfer. The ultimate performance of nanopore-evaporation-based processes is dictated by evaporation kinetics at the liquid-vapor interface, which has yet to be experimentally studied down to the single nanopore level. Here we report unambiguous measurements of kinetically limited intense evaporation from individual hydrophilic nanopores with both hydrophilic and hydrophobic top outer surfaces at 22 °C using nanochannel-connected nanopore devices. Our results show that the evaporation fluxes of nanopores with hydrophilic outer surfaces show a strong diameter dependence with an exponent of nearly -1.5, reaching up to 11-fold of the maximum theoretical predication provided by the classical Hertz-Knudsen relation at a pore diameter of 27 nm. Differently, the evaporation fluxes of nanopores with hydrophobic outer surfaces show a different diameter dependence with an exponent of -0.66, achieving 66% of the maximum theoretical predication at a pore diameter of 28 nm. We discover that the ultrafast diameter-dependent evaporation from nanopores with hydrophilic outer surfaces mainly stems from evaporating water thin films outside of the nanopores. In contrast, the diameter-dependent evaporation from nanopores with hydrophobic outer surfaces is governed by evaporation kinetics inside the nanopores, which indicates that the evaporation coefficient varies in different nanoscale confinements, possibly due to surface-charge-induced concentration changes of hydronium ions. This study enhances our understanding of evaporation at the nanoscale and demonstrates great potential of evaporation from nanopores.

9.
Natl Sci Rev ; 6(6): 1065-1066, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34691972
10.
Nature ; 558(7710): 379-380, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925971
11.
Lab Chip ; 18(5): 743-753, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29387860

RESUMEN

Various nanomechanical movements of bacteria provide a signature of bacterial viability. Most notably, bacterial movements have been observed to subside rapidly and dramatically when the bacteria are exposed to effective antibiotics. Thus, monitoring bacterial movements, if performed with high fidelity, could offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and ultrasensitive electrical transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microfluidic channel, which the bacteria populate. The swimming of planktonic bacteria and the random oscillations of surface-immobilized bacteria both cause small but detectable electrical fluctuations. We show that this technique provides enough sensitivity to detect even the slightest movements of a single cell; we also demonstrate an antibiotic susceptibility test in a biological matrix. Given that it lends itself to smooth integration with other microfluidic methods and devices, the technique can be developed into a functional antibiotic susceptibility test, in particular, for urinary tract infections.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Pruebas de Sensibilidad Microbiana/métodos , Técnicas Analíticas Microfluídicas/métodos , Antibacterianos/química
12.
Nat Nanotechnol ; 13(3): 238-245, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29292381

RESUMEN

Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

13.
Nano Lett ; 17(8): 4813-4819, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28719216

RESUMEN

Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm2. The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

14.
Langmuir ; 33(34): 8395-8403, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28749140

RESUMEN

Liquid drying in nanoporous media is a key process in food, textile, oil and energy industries, but the corresponding kinetics remains poorly understood due to the structural complexity of nanoporous media. Here, we directly observe the drying process and study drying kinetics in single two-dimensional (2-D) nanochannels with height ranging from 29 to 122 nm. Two different drying behaviors are discovered in such nanoconfinements: continuous meniscus receding and discontinuous meniscus receding due to liquid bridge formation ahead of the meniscus, albeit similar drying rates. The geometry dependence of the measured drying rates is studied at different humidities and compared with a theoretical model considering liquid corner flow, liquid thin film flow, and vapor diffusion as contributors to the overall drying rates. Individual contributions from vapor and liquid transport inside the nanochannels to the drying kinetics are decoupled, and the water vapor diffusivity is successfully extracted. Our results show that both corner flow and vapor diffusion play important roles on water drying in nanochannels without sharp corners. Our findings further indicate that water vapor diffusion in nanoscale confinements can still be described by the classic Knudsen diffusion theory. These results provide new insights of liquid drying in nanoporous media and have implication in optimizing drying processes in industrial applications.

15.
Sci Rep ; 7(1): 2646, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572635

RESUMEN

Understanding phase behaviors of nanoconfined water has driven notable research interests recently. In this work, we examine water encapsulated under a graphene cover that offers an ideal testbed to explore its molecular structures and thermodynamics. We find layered water structures for up to ~1000 trapped water molecules, which is stabilized by the spatial confinement and pressure induced by interfacial adhesion. For monolayer encapsulations, we identify representative two-dimensional crystalline lattices as well as defects therein. Free energy analysis shows that the structural orders with low entropy are compensated by high formation energies due to the pressurized confinement. There exists an order-to-disorder transition for this condensed phase at ~480-490 K, with a sharp reduction in the number of hydrogen bonds and increase in the entropy. Fast diffusion of the encapsulated water demonstrates anomalous temperature dependence, indicating the solid-to-fluid nature of this structural transition. These findings offer fundamental understandings of the encapsulated water that can be used as a pressurized cell with trapped molecular species, and provide guidance for practical applications with its presence, for example, in the design of nanodevices and nanoconfined reactive cells.

16.
Nanoscale ; 8(47): 19527-19535, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27878192

RESUMEN

Carbon nanofluidic structures made of carbon nanotubes or graphene/graphene oxide have shown great promise in energy and environment applications due to the newly discovered fast and selective mass transport. However, they have yet to be utilized in nanofluidic devices for lab-on-a-chip applications because of great challenges in their fabrication and integration. Herein we report the fabrication of two-dimensional planar graphene nanochannel devices and the study of ion transport inside a graphene nanochannel array. A MEMS fabrication process that includes controlled nanochannel etching, graphene wet transfer, and vacuum anodic bonding is developed to fabricate graphene nanochannels where graphene conformally coats the channel surfaces. We observe higher ionic conductance inside the graphene nanochannels compared with silica nanochannels with the same geometries at low electrolyte concentrations (10-6 M-10-2 M). Enhanced electroosmotic flow due to the boundary slip at graphene surfaces is attributed to the measured higher conductance in the graphene nanochannels. Our results also suggest that the surface charge on the graphene surface, originating from the dissociation of oxygen-containing functional groups, is crucial to the enhanced electroosmotic flow inside the nanochannels.

17.
Biomicrofluidics ; 10(5): 054102, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27679678

RESUMEN

Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

18.
ACS Nano ; 10(8): 7476-84, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27472431

RESUMEN

We report label-free electrical detection of enzymatic reactions using 2-D nanofluidic channels and investigate reaction kinetics of enzymatic reactions on immobilized substrates in nanoscale-confined spaces. Trypsin proteolysis is chosen for demonstration of the detection scheme. When trypsin cleaves poly-l-lysine coated on the surface of silica nanochannels, the resulting change of surface charge density can be detected by monitoring the ionic conductance of the nanochannels. Our results show that detection of such surface enzymatic reactions is faster than detection of surface binding reactions in nanochannels for low-concentration analytes. Furthermore, the nanochannel sensor has a sensitivity down to 5 ng/mL, which statistically corresponds to a single enzyme per nanochannel. Our results also suggest that enzyme kinetics in nanochannels is fundamentally different from that in bulk solutions or plain surfaces. Such enzymatic reactions form two clear self-propagating reaction fronts inside the nanochannels, and the reaction fronts follow square-root time dependences at high enzyme concentrations due to significant nonspecific adsorption. However, at low enzyme concentrations when nonspecific adsorption is negligible, the reaction fronts propagate linearly with time, and the corresponding propagation speed is related to the channel geometry, enzyme concentration, catalytic reaction constant, diffusion coefficient, and substrate surface density. Optimization of this nanochannel sensor could lead to a quick-response, highly sensitive, and label-free sensor for enzyme assay and kinetic studies.


Asunto(s)
Enzimas/metabolismo , Nanotecnología , Adsorción , Catálisis , Electricidad , Cinética , Tripsina
19.
Sci Rep ; 6: 24936, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27112404

RESUMEN

Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

20.
Langmuir ; 31(44): 12291-9, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26411775

RESUMEN

In this work, we study silicon nanowire synthesis via one-step metal-assisted chemical etching (MACE) on microstructured silicon surfaces with periodic pillar/cavity array. It is found that hydrogen gas produced from the initial anodic reaction can be trapped inside cavities and between pillars, which serves as a mask to prevent local etching, and leads to the formation of patterned vertically aligned nanowire array. A simple model is presented to demonstrate that such bubble entrapment is due to the significant adhesion energy barrier, which is a function of pillar/cavity geometry, contact angle, and nanowire length to be etched. The bubble entrapment can be efficiently removed when extra energy is introduced by sonication to overcome this energy barrier, resulting in nanowire growth in all exposed surfaces. This bubble-regulated MACE process on microstructured surfaces can be used to fabricate nanowire arrays with desired morphologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...